CRYSTAL STRUCTURES OF RHODACYCLOPENTANE DERIVATIVES

ATTILIO IMMIRZI

Istituto di Chimica delle Macromolecole del CNR, Milano, via A. Corti 12, 20133 ([taly) (Received May 6th, 1974)

Summary

Two complexes containing a rhodacyclopentane ring, viz. $(acac)Rh(C_6H_8)$ -(py)₂ and $(acac)_2Rh_2(C_6H_8)(PPh_3)$ have been studied by X-ray diffraction. The ring forms through oxidative coupling of two allene molecules giving the structure A with trivalent, octahedrally-coordinated rhodium. In the second complex the unsaturated hydrocarbon part is also π -bonded to another Rh atom, and one acac group acts as a five-electron donor.

Introduction

In a previous communication [1] we reported the formation and the essential structural data of the two rhodacylopentane derivatives: $(acac)Rh(C_6H_8)$ - $(py)_2$ (I), and $(acac)_2 Rh_2(C_6H_6)(PPh_3)_2$ (II), $acac = C_5H_7O = acetylacetonato$, $py = C_5H_5N = pyridine$, $PPh_3 = P(C_6H_5)_3 = triphenylphosphine$, C_6H_8 being the $CH_2 \qquad CH_2$ bidentate group $-CH_2-C - C - CH_2-$. In this paper the complete results of the single-crystal X-ray diffraction investigations and further discussion on the resulting structures are given.

Experimental

X-ray diffraction experiments were performed with Philips single crystal diffractioneter PW-1100, using a graphite monochromator and Mo- K_{α} radiation for intensity measurements and Cu- K_{α} radiation (λ 1.5418 Å) for lattice constants determination.

Crystal data

I: (acac)Rh(C_oH₈)(py)₂ M = 440.3, a = 13.167(1), b = 9.108(1), c = 9.185Å, a = 107.93(1), $\beta = 81.12(1)$, $\gamma = 93.17(1)^{\circ}$, $D_m = 1.4$ g cm⁻³, $D_c = 1.41$ g cm Z = 2, F(000) = 452, space group $P\overline{1}$, $\mu = 8.14$ cm⁻¹; II: (acac)₂Rh₂(C₆H₈)(PPh₃ M = 1008.8, a = 17.866(4), b = 14.993(4), c = 10.297(3) Å, a = 99.22(2), $\beta = 91.19(2)$, $\gamma = 108.26(2)^{\circ}$, $D_m = 1.3$ g cm⁻³, $D_c = 1.29$ g cm⁻³, Z = 2, F(000) = 1032, space group $P\overline{1}$, $\mu = 7.19$ cm⁻¹.

Crystals of regular shape, ~ 0.3 mm in size, were sealed in low absorption glass capillaries. For accurate lattice parameter determination the diffraction angles θ for 46 and 85 reflections for the two compounds respectively were measured following the standard procedure of the PW-1100 system [2]; the para eters were obtained by minimizing the function $\Sigma(\sin \theta_{obs} - \sin \theta_{calc})^2$.

Integrated intensities were measured by the ω -scan method for complex I and by the ω -2 θ -scan method for complex II. For I 3640 reflections having $\theta < 23^{\circ}$ and $l \ge 0$ were measured and 3373 of these with I > 3 σ were used in structure determination and refinement. For compound II 5530 reflections having $\theta < 21^{\circ}$ and $l \ge 0$ were measured and 4473 used. The absorption correction was disregarded ($\mu R < 0.2$ in both cases).

Structure determination and refinement

The structures were resolved by the heavy atom method and the parameter of the non-hydrogen atoms were refined by the least squares method, minimizin $\Sigma w (F_{obs} - F_{colc})^2$ with unitary weight factors, anisotropic thermal parameters and the 9 × 9 block diagonal approximation. Crystallographic programs given in ref. 3 and the atomic scattering factors given in ref. 4 were used with a constant correction of -1.1 electrons for Rh and +0.1 for P to account for anomalous scattering. In the last two refinement cycles the hydrogen atoms belonging to the pyridine and phosphine groups were introduced in calculated positions. The hydrogen atoms belonging to the C₆H₈ groups and that attached to the central C atom in acac groups were localized by means of difference Fourier syntheses, but no acceptable hydrogen positions were obtained for the acac methyl groups.

The final disagreement factor was 0.033 for I and 0.041 for II. Final coordinates are listed in Table 1. Bond lengths and valence and torsion angles are given in Tables 2 and 3 respectively. A list of observed and calculated structure factors may be obtained from the author on request.

(continuea on p. 222)

FRACTIONAL COORDINATES AND STANDARD DEVIATIONS				
atom	x/a (0)	s/b (0)	z/c (a)	
Complex 1				
RH	0.26141(2)	0.38289(3)	0.11337(3)	
C-1 · 1	0.40711(37)	0 30428(62)	0.35783(48)	
C-1 · 2	0.33319(31)	0.28334(48)	0.22151(43)	
C-1 • 3	0.26146(33)	0.16465(48)	-0.24693(43)	
C-1 · 4	0.19286(33)	0.11549(45)	-0.13886(46)	
C-1 · 5	0.11800(42)	-0.01054(59)	0.19965(61)	
0-1 - 1	0.34625(21)	0.38234(30)	-0.09234(28)	
0-1 - 2	0.18792(22)	0 16776(31)	0.00641(30)	

TABLE 1

218

(continued)

'ABLE 1 (continued)

tom	×/a(0)	y/b (a)	z/c (a)
N-1	0.38775(25)	0.25855(37)	0.15429(35)
C-7	0.48406(32)	0.30913(50)	0.13733(49)
C-8	0.56610(37)	0.23521(64)	0.15879(62)
C-9	0.54667(43)	0.09952(66)	0.19750(62)
C-10	0.44763(42)	0.94602(57)	0.21472(57)
C-11	0.37097(35)	0.12856(50)	0.19210(49)
N-2	0.18056(24)	0.38312(36)	0.32201(34)
C-12	0.09393(36)	0.30502(59)	0.32910(49)
C-13	0.03969(38)	0 29052(66)	0.46643(58)
C-14	0 07837(37)	0.36209(60)	0.60258(50)
C-15	0.16520(39)	0 44346(62)	0.59595(49)
C-16	0.21599(34)	0.45416(56)	0.45627(47)
C-1	0.13144(66)	0.76634(85)	0.06263(99)
C-2	0.16649(40)	0 66810(60)	0.12030(64)
C-3	0.23630(39)	0.71291(55)	0.23700(57)
C-4	0.22189(50)	0.83367(69)	0.36367(74)
C-5	0.14655(38)	0.49865(60)	0.07040(54)
C-6	0.32076(37)	0.59904(55)	0.20104(52)
H-1	0.1525	0.8716	0.0670
H-1'	0.0883	0.7231	0.0203
H-4	0.1666	0.8856	0 3783
H-4'	0.2760	0 8509	0.4334
H-5	0.1226	0.4553	0 0330
H-5	0.0781	0 4676	0.1313
H-6	0.3662	0.6167	0.1231
H-6'	0 3598	0.6182	0.2859
H-1 - 3	0.2580	0.1013	-0.3666
Complex II			
RH	0.77800(5)	0.79544(6)	0.61711(8)
P-1	0 76251(17)	0.93596(20)	0.60547(28)
A-1 - 1	0.68960(62)	0 97296(77)	0.70743(120)
A-1 - 2	0.67682(73)	1.05867(87)	0.70268(130)
A-1 - 3	0 62674(78)	1.08943(97)	0.77782(134)
A-1 - 4	0.58201(81)	1.03088(99)	0.85885(127)
A-1 - 5	0.59150(81)	0.94519(99)	0.86210(99)
A-1 - 6	0.64660(66)	0 91636(85)	0 78888(99)
A-1 • 7	0.73464(69)	0 96307(80)	0.44661(99)
A-1 · 8	0.77226(78)	1.05291(86)	0.41117(123)
A-1 - 9	0.74567(86)	1.07231(95)	0.29591(123)
A-1 - 10	0.68375(82)	1.00531(94)	0.21301(124)
A-1 - 11	0.64823(82)	0.91862(92)	0.24879(125)
A-1 • 12	0.67351(68)	0.89615(82)	0.36321(99)
A-1 - 13	0.85498(65)	1.03001(74)	0.66263(99)
A-1 · 14	0.91781(74)	1 04583(83)	0.57902(121)
A-1 • 15	0.99051(69)	1.11434(84)	0.61736(132)
A-1 - 16	1.00358(73)	1.16843(91)	0.74253(139)
A-1 - 17	0.94626(84)	1.13206(99)	0.82971(144)
4-1 - 10	0.80970(74)	0.81612(00)	0.79029(99)
	0.80056(86)	0.84042(55)	1.05919(120)
	0.02009(72)	0 04419(82) A 07030/00\	0 808301007
C.1.4	0.80422((1)	0.01232(00)	0.03043(33)
C-1 - 5	1 03007/681	0 91719/00\	0.78055/1221
0.1.1	0.76669(46)	0.31113(33)	0.10030(132)
0-1-2	0.10002(40)	0.85615(51)	0.66243(71)
ט-ו-ב טעי	0.50421(42)	0.54391/61	0.30190/01
na	0.03412(3)	0.04031(0)	0.33100(3)

(continued)

TABLE 1 (continued)

atom	x/a (0)	y/6 (a)	2/c (0)
P-0	0.65556(17)	0.38609(20)	0.28688(28)
A-2 · 1	0.58217(64)	0.36267(73)	0.14917(99)
A-2 · 2	0.60388(77)	0.39650(88)	0.03370(99)
A-2 · 3	0.55043(90)	0 38342(98)	0.07068(132)
A-2 · 4	0.46885(83)	0.33428(95)	0.05934(142)
A-2 · 5	0.44725(77)	0 30161(97)	0.05552(135)
A-2 · 6	0.50177(73)	0.31559(85)	0.15828(120)
A-2 - 7	0.60686(62)	0.29441(76)	0.38219(99)
A-2 · 8	0.56926(70)	0 32057(85)	0,49330(99)
4-2 - 9	0.52749(78)	0.25146(94)	0.56162(129)
A-2 · 10	0.52548(79)	0.15714(96)	0.52544(135)
A-2 + 11	0.56336(96)	0.13296(95)	0.41911(154)
A-2 · 12	0.60479(82)	0.20046(87)	0.34672(136)
A-2 · 13	C.73198(69)	0.34005(79)	0.21162(99)
4-2-14	0 80481(76)	0 37045(97)	0.27946(151)
A-2 · 15	0.86471(92)	0.33374(99)	0.23222(183)
A-2 - 16	0.84787(99)	0.26791(99)	0.11817(168)
A-2 · 17	0.77730(94)	0.23864(99)	0.04878(145)
A-2 · 18	0.71864(85)	0.27301(94)	0.09577(127)
C-2 • 1	0,71103(88)	0 59196(97)	0.82511(123)
C-2 · 2	0 73086(70)	0.58859(79)	0.68070(99)
C-2 · 3	0.80575(69)	0.65412(79)	0.65502(99)
C-2 · 4	0.84958(67)	0.62677(78)	0.54546(122)
C-2 · 5	0 93878(75)	0.66243(99)	0.56321(150)
0.2.1	0.68195(46)	0 52757(51)	0.59460(74)
0.2.2	0.81845(45)	0.57276(52)	0.43774(77)
C-1	0.71657(83)	0.61677(78)	0.23312(110)
C-2	0.71714(61)	0.68584(69)	0.35132(99)
C-3	0.64977(61)	0.66342(72)	0.42775(99)
C-4	0.58693(61)	0.57268(74)	0.37925(121)
C-5	0 78902(69)	0.76678(76)	0.41424(99)
C-6	0.65857(60)	0.72406(77)	0.56400(99)
H-1	0 7634	0.6332	0.1720
H-1'	0.6703	0.5890	0.1618
H-4	0.5483	0,5428	0.4519
H-4'	0.5627	0,5513	0.2796
H·5	0.8431	0.7520	0.3805
H-5'	0.8138	0.8379	0.3734
H-6	0.6314	0 6808	0.6301
H-6'	0 6216	0 7716	0 5607
H-1 · 3	0.9408	0.8912	0.9787
H.9 + 3	0.8476	0.6998	0.7430

TABLE 2

PRINCIPAL BOND LENGTHS^C (Å)

Complex I					
C ₆ H ₈ molety					
C-1-C-2	1.307	Rh-C·5	2.042	C-4-H-4	1,00
C-2-C-3	1,467	RhC-6	2.045	C-5-H-5	1.00
C-3-C-4	1.329	C-1-H-1	0.97	C-5-H-5	1.06
C-2-C-5	1.489	C-1-H-1	0.99	С-6-н-6	0 91
C-3C-6	1.492	C-4-H-4	0.86	C-6-H-6'	0.97

L

TA	BLE	2 ((continued)
----	-----	-----	-------------

Acac group					
C.1.1-C-1.2	1 517	6.1.4-0.1.5	1 500	C-1 3~H-1 3	1.08
C 1 2 - C 1 3	1 28 4	$C_{1} = 0.11$	1 280	Bb-0.1 1	2.040
C-1.2 C-1.3	1.304	C = 1, 2 = 0.1, 1	1.260	Rn-0-1.2	2.040
.0-1.30-1.4	1.556	0-14-0-1.2	1.204	(III-0-1.2	- 134
Other bond length	s involving Rh d	aloms			
. Rh—N-1	2.203	Rh-	·N-2	2,043	
· Complex II					
C ₆ H ₈ molety					
C-1C-2	1.453	Rh ^{'''} C-6	2.078	C-1-H-1'	1.02
C-2-C-3	1.435	Rh'-C-1	2 096	C-4-H-4	1.09
C-3-C-4	1.465	Rh'C-2	2.153	C-1-H-1	1.06
. C-2–C-5	1.503	Rh'C-3	2.156	C-5-H-5	1.11
C-3C-6	1.510	Rh'C-4	2.097	C-5-H-5	1.17
Rh‴C·5	2.085	C-1-H-1	1.05	С-6-н-э	1.04
				С-6-Н-б	1.12
Acac groups					
1) acacı					
C-1:1-C-1.2	1.528	C-1,4-C-1.5	1.515	C-1.3~H-1.3	0 99
C-1.2-C-1.3	1.372	C-1.2-0-1.1	1.286	Rh‴0.1.1	2.172
C-1.3~C-1.4	1.410	C-1 4-0-1.2	1.290	Rh‴-0-1.2	2 157
				Rh‴C·2.↓	2.413
2) acac					
C-2.1-C-2.2	1.532	C-2.4-C-2.5	1.510	C·2 3-H·2 3	1.13
C-2.2-C-2.3	1.451	C-2 2-0-2.1	1.255	Rb ['] -0-2 1	2.152
C-2.3-C-2.4	1.460	C-2.4O-2.2	1.256	Rh'-0-2.2	2,151
Phosphine groups					
Rh ^{"-} -P·1	2.232	P-1-A-1 13	1.811	P-2-A-2.7	1 833
P-1 1-1	1.848	Rh'P-2	2.304	P-2-A-1.13	1.842
P-1-A-1.7	1.847	P-2-A-2.1	1.821		

^a Average standard deviations for bond lengths: Rh-P 0.005, Rh-X 0.010, P-X 0.012, X-X 0.020, X-H 0.010 Å (X = C, N or O).

TABLE 3

VALENCE^a AND TORSION ANGLES (°)

Complex 1			
C ₆ H ₈ molety			
C-5RhC-6	83.98	C-6-C-3-C-2	111.25
Rh-C-6-C-3	108.33	C-1C-2C-3	122 92
Rh-C-5-C-2	110.78	C-4-C-3-C-2	124.13
C-5C-2C-3	112.05		
C-5C-2C-3C-6	39.85	C-1C-2C-3C-4	47.57
Acac group			
C-1.2-C-1.3-C-1.4	122.88	C-1.2-C-1.3-H-1.3	115.5
Rh-O-1.1-C-1.2	123.19	C-1.4-C-1.3-H-1.3	115.5
RhO-1.2C-1.4	121 03	0-1.1-Rh-0-1.2	91.60

(continued)

TABLE 3 (continued)

Other valence angles invo	oluing Rh aloms		
N-1-Rb-N-2	90.28	N-2RbC-6	93.18
N-1-Rh-C-5	178.53	N-2-Rh-0-1.1	178.23
N-1—Rh—C-6	95.79	N-2-Rh-O-1.2	89.22
N-1	88.14	C-5-Rh-O-1.1	90.40
N-1-Rh-0-1.2	90.77	C-5-Rb-O-1.2	89.40
N-2-Rh-C-5	91.18	C-6-Rh-O-1 1	86.18
		C-6-Rh-O-1.2	173.00
Complex II			
0.11			
C ₆ H ₈ molery			
C-5RhC-6	84.11	C-6-C-3-C-2	116.28
Rb ^m -C-6-C-3	108 71	C-1-C-2-C-3	117.09
Rh -C-5C-2	108.34	C-4-C-3C-2	116.74
C-5C-2C-3	117.11		
C-5C-2C-3C-6	0.03	C-1-C-2-C-3-C-4	0.20
Acac groups			
1) acacı			
C-1.2-C-1.3-C-1.4	122.82	C-1.2-C-1.3-H-1.3	116.0
8h ^m -0-1 1-C-1 ?	121.61	C-1 4-C-1 3-H-1 3	115 1
8b ^{'''}	126.06	0.11 - Rh''' = 0.12	87.13
	120.00		01.40
2) acac 2			
C-2.2-C-2.3-C-2.4	120 70	C-2 2-C-2 3-H-2.3	118.0
Rh'-0-2.1-C-2.2	117.37	C-2.4-C-2.3-H-2.3	110.9
Rh'-0-2.2-C-2.4	117.94	0-2.1-Rh'-0-2.2	85.43
Other valence angles invo	olving Rh atoms		
P-1—Rh [‴] —C-5	91.70	C-6-Rh'''-O-1.2	174,04
P-1-Rh ^{'''} -C-6	91.42	C-6Rh ⁷⁷ C-2.3	94.11
P-1-Rh ^{"''} -O-1.1	92.61	O-1.1-Rb ^{""} -C-2.3	82.05
P-1-Rh ^{"''} O-1.2	93.74	O-1.2—Rh‴—C-2.3	81.01
P·1−Rb [‴] −C·2.3	172.64	P·2-Rh -0.2.1	100.58
C-5-Rh ^{"-O-1.1}	175.66	P-2-Rh'-0-2.2	101.58
C-5	92.76	P-2	102.44
C-5	93.69		102.11
C-6-Rh ^{"''} -O-1.1	95.31	P-2-Rb'-C-4	100.81
Phosphine groups			
Rb [‴] -P·1-A·1.1	118.13	A-1.1-P-1-A-1.7	99.13
Rh ^{'''} -P-1-A-1 7	121 37	A-1.1-P-1-A-1.13	103.70
Rh'''-P-1-A-1.13	108 73	A-1 7-P-1-A-1.13	103.57
Rh'-P-2-A-2.1	111.32	A-2.1-P-2-A-2.7	102.17
Rb'-P-2-A-2.7	118.09	A-2 1-P-2-A-2.13	103.43
Rh'-P-2-A-2.13	117.64	A-2.7-P-2-A-2.13	102.40
			102.11

^a Average standard deviations for valence angles: X-Rb-X 0.20, P-Rb-X 0.15, Rh-P-X 0.35, X-P-X 0.30, Rb-X-X 0.55, P-X-X 0.65, X-X-X 0.65, C-C·H ~ 6.0° (X = C, N or O).

Results and comments

A view of the two structures is shown in Fig. 1. Complex I displays octahedral geometry with acac and C_6H_8 bonded as chelate ligands and the two pyridine ligands in mutually *cis* relation. The hydrocarbon ligand exerts con-

Fig. 1. Projection of the structures of the complexes I and II. Only the hydrogen atoms belonging to the C_6H_8 groups and those bonded to the central carbon atom in acac groups are indicated.

siderable trans influence: the Rh-N bond lengths cis and trans to the Rh-C-5 bond differ by 0.16 Å and the Rh-O bond lengths cis and trans to the Rh-Cbond differ by 0.12 Å. Also the C-C and C-O bond lengths in the acac group are asymmetrical as though a minor electron delocalization had been induced in the coordinated acac molecule (the trend is toward structure a see scheme below).

The geometry of the rhodacyclopentane ring is noteworthy: neither the 5-atom ring, nor the conjugated diene group is planar. The bonds C-2-C-5 and C-3-C-6 are staggered by 39.9° and the bonds C-2-C-1 and C-3-C-4 by 48.2°. The bond lengths for the conjugated diene fragment do not differ appreciably from the values for the gaseous butadiene [5] (C-C = 1.464. C=C = 1.337 Å). The observed conformation for the diene fragment substantiates the results of ab initio LCAO SCF MO calculations, according to which the conformational energy in the neighbourhood of the *cis* conformation does not change significan ly for a rotation of the order of 40° [6].

Complex II displays a two-centre coordination geometry with two differen rhodium atoms in different environments. The rhodium atom Rh' is bonded to one acac group, (labelled acac₂), one PPh₃ molecule, and is also π -bonded to the *cis*-diene group of the C₆H₈ molety; the coordination geometry is a tetragonal pyramid. The second rhodium atom Rh''' is bonded to the other acac group (labelled acac₁), the other PPh₃ molecule and to the C₆H₈ group through two σ bonds, and to the acac₂ molecule via its central carbon atom; the coordination geometry is octahedral. One interpretation of the bonding of II, coherent with the observed geometry and with the 18 electron rule [7], is to consider the Rh' atom to be in oxidation state 1 and Rh''' in oxidation state 3 with two electrons donated from the central C₃ atom of acac₂, which therefore acts as a 5-electron donor. For a chelated acac group the following valence-bond structures may be considered:

In our case, the zwitterionic structures (c) and (d) (isoelectronic with N-acethylacetamide) should be considered for $acac_2$ making the central C_3 atom anionic with a lone pair available for donation. This interpretation is coherent: (i) with the tetrahedral coordination displayed by the central C_3 atom; (ii) with the observed C_2 — C_3 and C_3 — C_4 bond lengths (1.45, 1.46 Å), both longer than in $acac_1$ (1.37, 1.41 Å); (iii) the C=O distances (1.25, 1.26 Å) both shorter than in $acac_1$ (1.29, 1.29 Å) (the C=O distances in the related KI-bis(N-acethylacetamide) complex [8] are 1.22 and 1.27 Å); (iv) the Rh^{III}— C_3 bond length (2.43 Å) which is much longer than a covalent Rh—C bond (2.09 Å). Similar bonding of the acetylacetonato group with silver [9] and platinum [10] has been proposed.

The cis-diene fragment coordinated to Rh' is planar and the angular deviations of the substituents are similar to those observed, for example, in π -diene

Fe(CO)₃ complexes [11]. The conformation of the rhodacyclopentane ring is bf the "envelope" type with the C-2—C-1 and the C-3—C-4 bonds eclipsed and the Rh" displaced by 0.57 Å from the C-5—C-2—C-3—C-6 plane. With respect to the above-cited Fe-diene complexes, a significant difference is seen in the C—C bond lengths of the coordinated diene group: 1.47, 1.44, 1.47 for II and 1.41, 1.40, 1.41 Å for π -butadiene—Fe(CO)₃ [12]. According to Churchill and Mason [13], these variations can be correlated with the π -acceptor ability of the ligand *trans* to the diene. In the π -diene—Fe(CO)₃ compounds, the strong π -acceptor C=O ligands reduce the metal-to-diene back-donation, whereas in our case the *trans* acac and PPh₃ ligands have much lower π -acceptor ability and thus greater back-bonding to the diene should occur.

References

- 1 G. Ingrosso, A. Immurzi and L. Porn, J. Organometal. Chem., 60 (1973) C35.
- 2 User Manual for PW-1100, Philips Eindboven section 5.1.1.
- 3 (1) A. Immurzi, Ric. Sci., 9 (1967) 743, 846, 848. (1) A. Immurzi, J. Appl. Cryst. 6 (1973) 246.
- 4 International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, 1968.
- 5 A.R.H. Cole, G.M. Mohay and G A. Osborne, Spectrochim. Acta, part 4, 23 (1967) 909.
- 6 L Random and J.A. Pople, J. Amer. Chem. Soc., 92 (1970) 4786. G.E. Coates, M.L.H. Green and K. Wade, Organometallic Compounds, Methuen, London, 1968, vol. 11, p.3.
- 8 J.P. Roux and J.C.A. Boeyens, Acta Crystallogr., sect. B, 25 (1969) 2395
- 9 W.H. Watson and Chi-Tsun Lin, Inorg. Chem., 5 (1966) 1074.
- 10 A. Robson and M.R. Truter, J. Chem. Soc., (1965) 630.
- 11 A. Immirzi, J. Organometal. Chem., 76 (1974) 65.
- 12 O.S. Mills and G Robinson, Acta Crystallogr., 16 (1963) 758, see also, for homologous structures references cited by N.A. Clinton and C.P. Lulya, J. Amer. Chem. Soc., 92 (1970) 3053.
- 13 M.R. Churchill and R. Mason, Advan. Organometal. Chem., 5 (1967) 93.